首页

欢迎

 

Welcome

欢迎来到这里, 这是一个学习数学、讨论数学的网站.

转到问题

请输入问题号, 例如: 2512

IMAGINE, THINK, and DO
How to be a scientist, mathematician and an engineer, all in one?
--- S. Muthu Muthukrishnan

Local Notes

Local Notes 是一款 Windows 下的笔记系统.

Local Notes 下载

Sowya

Sowya 是一款运行于 Windows 下的计算软件.

详情

下载 Sowya.7z (包含最新版的 Sowya.exe and SowyaApp.exe)


注: 自 v0.550 开始, Calculator 更名为 Sowya. [Sowya] 是吴语中数学的发音, 可在 cn.bing.com/translator 中输入 Sowya, 听其英语发音或法语发音.





注册

欢迎注册, 您的参与将会促进数学交流. 注册

在注册之前, 或许您想先试用一下. 测试帐号: usertest 密码: usertest. 请不要更改密码.


我制作的 slides

Problem

随机显示问题

Problèmes d'affichage aléatoires

分析 >> 数学分析 >> 级数
Questions in category: 级数 (Infinite Series).

证明: $\frac{\pi^2}{12}=\sum\limits_{n=1}^{+\infty}(-1)^{n-1}\frac{1}{n^2}.$

Posted by haifeng on 2012-07-02 17:41:53 last update 2020-01-17 09:40:59 | Answers (0)


提示: 令 $f(x)=x^2$, $-\pi\leqslant x\leqslant\pi$, 求它的 Fourier 展开式,

\[
x^2\sim\frac{\pi^2}{3}+4\sum_{n=1}^{+\infty}(-1)^n\frac{\cos nx}{n^2},
\]

然后令 $x=0$ 即可.


形式上类似的一个级数是

\[\frac{\pi^2}{6}=\sum_{n=1}^{+\infty}\frac{1}{n^2}.\]

问题20.